
Streaming Algorithms:
Data without a disk

H. Andrew Schwartz

CSE545
Spring 2023

 Big Data Analytics, The Class

Goal: Generalizations
A model or summarization of the data.

Hadoop File System

MapReduce

Spark

Deep Learning Frameworks

Similarity Search

Recommendation Systems
Link Analysis

Transformers/Self-SupervisionStreaming
Hypothesis Testing

Data Workflow Frameworks Analytics and Algorithms

Broadly:

Process
RECORD GONERECORD IN

What is Streaming?

(1) Direct: Often, data …
● … cannot be stored (too big, privacy concerns)
● … are not practical to access repeatedly (reading is too long)
● … are rapidly arriving (need rapidly updated "results")

Why Streaming?

(1) Direct: Often, data …
● … cannot be stored (too big, privacy concerns)
● … are not practical to access repeatedly (reading is too long)
● … are rapidly arriving (need rapidly updated "results")

Examples: Google search queries
Satellite imagery data

Text Messages, Status updates
Click Streams

Why Streaming?

(1) Direct: Often, data …
● … cannot be stored (too big, privacy concerns)
● … are not practical to access repeatedly (reading is too long)
● … are rapidly arriving (need rapidly updated "results")

(2) Indirect: The constraints for streaming data force one to
solutions that are often efficient even when storing data.
 Streaming Approx Random Sample

Distributed IO (MapReduce, Spark)

Why Streaming?

(1) Direct: Often, data …
● … cannot be stored (too big, privacy concerns)
● … are not practical to access repeatedly (reading is too long)
● … are rapidly arriving (need rapidly updated "results")

(2) Indirect: The constraints for streaming data force one to
solutions that are often efficient even when storing data.
 Streaming Approx Random Sample

Distributed IO (MapReduce, Spark)

Often translates into O(N) or strictly N algorithms.

Process
RECORD GONERECORD IN

Why Streaming?

● General Stream Processing Model

● Sampling

● Counting Distinct Elements

● Filtering data according to a criteria

Streaming Topics

Standing Queries:
Stored and permanently executing.

Ad-Hoc:
One-time questions
-- must store expected parts /
summaries of streams

Process
for

stream queries

RECORD GONERECORD IN

Standing Queries:
Stored and permanently executing.

Ad-Hoc:
One-time questions
-- must store expected parts /
summaries of streams

Process
for

stream queries

RECORD GONERECORD IN

E.g. How would you handle:
What is the mean of values seen so far?

Standing Queries:
Stored and permanently executing.

Ad-Hoc:
One-time questions
-- must store expected parts /
summaries of streams

Process
for

stream queries

RECORD GONERECORD IN

E.g. How would you handle:
What is the mean of values seen so far?

Important difference from typical database management:

● Input is not controlled by system staff.

● Input timing/rate is often unknown, controlled by users.

Standing Queries:
Stored and permanently executing.

Ad-Hoc:
One-time questions
-- must store expected parts /
summaries of streams

Process
for

stream queries

RECORD GONERECORD IN

Important difference from typical database management:

● Input is not controlled by system staff.

● Input timing/rate is often unknown, controlled by users.

Might hold a sliding window of
records instead of single record.

.. , i, h, g, f, e, d, c, b, a

E.g. How would you handle:
What is the mean of values seen so far?

Input stream
…, 4, 3, 11, 2, 0, 5, 8, 1, 4

Processor
Output
(Generalization,
Summarization)

A stream of records
(also often referred to as “elements” , “tuples”, "lines", or "rows")
Theoretically, could be anything! search queries, numbers, bits, image files, ...

(Leskovec et al., 2014)

General Stream Processing Model

ad-hoc queries

Input stream
…, 4, 3, 11, 2, 0, 5, 8, 1, 4

Processor
Output
(Generalization,
Summarization)

-- one-time questions

General Stream Processing Model

ad-hoc queries

Input stream
…, 4, 3, 11, 2, 0, 5, 8, 1, 4

Processor
Output
(Generalization,
Summarization)

standing
queries

-- asked at all times.

General Stream Processing Model

ad-hoc queries

Input stream
…, 4, 3, 11, 2, 0, 5, 8, 1, 4

Processor
Output
(Generalization,
Summarization)

standing
queries

General Stream Processing Model

limited
memory

ad-hoc queries

Input stream
…, 4, 3, 11, 2, 0, 5, 8, 1, 4

Processor
Output
(Generalization,
Summarization)

limited
memory archival storage

standing
queries

-- not suitable for
fast queries.

General Stream Processing Model

Create a random sample for statistical analysis.

Process RECORD GONERECORD IN

Sampling

Create a random sample for statistical analysis.

Process RECORD GONERECORD IN

Keep?

limited
memory

yes

Sampling

Create a random sample for statistical analysis.

Process RECORD GONERECORD IN

Keep?

limited
memory

yes

run statistical
analysis

sometime in
future

Sampling

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.

Sampling: 2 Versions

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.

2. Hierarchical Sampling: Sample an attribute of a record.

(e.g. records are tweets, but with to sample users)

Sampling: 2 Versions

tweet!
tweet!

tweet!

tweet!
tweet!

tweet!

tweet!

tweet!

tweet!
tweet!

tweet!

tweet!
tweet!

tweet!

tweet!

tweet!

tweet!
tweet!

tweet!

tweet!
tweet!

tweet!

tweet!

tweet!

tweet!
tweet!

tweet!

tweet!

Sampling: 2 Versions

tweet!
tweet!

tweet!

tweet!
tweet!

tweet!

tweet!

tweet!

tweet!
tweet!

tweet!

tweet!

tweet!
tweet!

tweet!

tweet!

tweet!
tweet!

tweet!

tweet!

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.

2. Hierarchical Sampling: Sample an attribute of a record.

(e.g. records are tweets, but with to sample users)

tweet!
tweet!

tweet!

tweet!
tweet!

tweet!

tweet!

tweet!

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.

Sampling

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.

record = stream.next()

if ?: #keep: e.g., true 5% of the time

memory.write(record)

yes

limited
memory

Sampling

RECORD GONERECORD IN

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.

record = stream.next()

if random() <= .05: #keep: true 5% of the time

memory.write(record)

random() < .05?

yes

limited
memory

Sampling

RECORD GONERECORD IN

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.

record = stream.next()

if random() <= .05: #keep: true 5% of the time

memory.write(record)

Problem: records/rows often are not units-of-analysis for statistical analyses

E.g. user_ids for searches, tweets; location_ids for satellite images

limited
memory

run statistical
analysis

sometime in
future

Sampling

2. Hierarchical Sampling: Sample an attribute of a record.

(e.g. records are tweets, but with to sample users)

record = stream.next()

if random() <= .05: #keep: true 5% of the time

memory.write(record)

Solution: ?

Sampling

Sampling

tweet!
tweet!

tweet!

tweet!
tweet!

tweet!

tweet!

tweet!

tweet!
tweet!

tweet!

tweet!

tweet!
tweet!

tweet!

tweet!

tweet!
tweet!

tweet!

tweet!tweet!
tweet!

tweet!

tweet!
tweet!

tweet!

tweet!

tweet!

2. Hierarchical Sampling: Sample an attribute of a record.

(e.g. records are tweets, but with to sample users)

record = stream.next()

if ??: #keep

memory.write(record)

Solution: ?

2. Hierarchical Sampling: Sample an attribute of a record.

(e.g. records are tweets, but with to sample users)

record = stream.next()

if ??: #keep:

memory.write(record)

Solution: instead of checking random digit; hash the attribute being sampled.

– streaming: only need to store hash functions; may be part of standing query

Sampling

2. Hierarchical Sampling: Sample an attribute of a record.

(e.g. records are tweets, but with to sample users)

record = stream.next()

if hash(record[‘user_id’]) == 1: #keep

memory.write(record)

Solution: instead of checking random digit; hash the attribute being sampled.

– streaming: only need to store hash functions; may be part of standing query

How many buckets to hash into?

Sampling

● General Stream Processing Model

● Sampling

● Counting Distinct Elements

● Filtering data according to a criteria

Streaming Topics

Moments:

● Suppose mi is the count of distinct element i in the data

● The kth moment of the stream is

Counting Moments

Moments:

● Suppose mi is the count of distinct element i in the data

● The kth moment of the stream is

● 0th moment: count of distinct elements
● 1st moment: length of stream
● 2nd moment: sum of squares

(measures uneveness; related to variance)

Counting Moments

Moments:

● Suppose mi is the count of distinct element i in the data

● The kth moment of the stream is

● 0th moment: count of distinct elements
● 1st moment: length of stream
● 2nd moment: sum of squares

(measures uneveness; related to variance)

Trivial: just increment
a counter

Counting Moments

Counting Moments

Moments:

● Suppose mi is the count of distinct element i in the data

● The kth moment of the stream is

● 0th moment: count of distinct elements
● 1st moment: length of stream
● 2nd moment: sum of squares

(measures uneveness; related to variance)

0th moment

Applications
Counting…

distinct words in large document.
distinct websites (URLs).
users that visit a site without storing.
unique queries to Alexa.

Counting Moments

Moments:

● Suppose mi is the count of distinct element i in the data

● The kth moment of the stream is

● 0th moment: count of distinct elements
● 1st moment: length of stream
● 2nd moment: sum of squares

(measures uneveness; related to variance)

0th moment
One Solution: Just keep a set (hashmap, dictionary, heap)

Problem: Can’t maintain that many in memory; disk storage is too slow

Applications
Counting…

distinct words in large document.
distinct websites (URLs).
users that visit a site without storing.
unique queries to Alexa.

Moments:

● Suppose mi is the count of distinct element i in the data

● The kth moment of the stream is

● 0th moment: count of distinct elements
● 1st moment: length of stream
● 2nd moment: sum of squares

(measures uneveness; related to variance)

0th moment
Streaming Solution: Flajolet-Martin Algorithm
General idea:

n -- suspected total number of elements observed
pick a hash, h, to map each element to log2n bits (buckets)

Counting Moments

Moments:

● Suppose mi is the count of distinct element i in the data

● The kth moment of the stream is

● 0th moment: count of distinct elements
● 1st moment: length of stream
● 2nd moment: sum of squares

(measures uneveness; related to variance)

0th moment
Streaming Solution: Flajolet-Martin Algorithm
General idea:

n -- suspected overestimate of total number of elements observed
pick a hash, h, to map each element to log2n bits (buckets)

R = 0 #current max number of zeros at tail
for each stream element, e:

r(e) = trailZeros(h(e)) #num of trailing 0s from h(e)
R = r(e) if r[e] > R

estimated_distinct_elements = 2R

Counting Moments

Counting Moments

Moments:

● Suppose mi is the count of distinct element i in the data

● The kth moment of the stream is

● 0th moment: count of distinct elements
● 1st moment: length of stream
● 2nd moment: sum of squares

(measures uneveness; related to variance)

0th moment
Streaming Solution: Flajolet-Martin Algorithm
General idea:

n -- suspected total number of elements observed
pick a hash, h, to map each element to log2n bits (buckets)

R = 0 #current max number of zeros at tail
for each stream element, e:

r(e) = trailZeros(h(e)) #num of trailing 0s from h(e)
R = r(e) if r[e] > R

estimated_distinct_elements = 2R # m

Mathematical Intuition
 P(trailZeros(h(e)) >= i) = 2-i
 # P(h(e) == __0) = .5; P(h(e) == __00) = .25; …
 P(trailZeros(h(e)) < i) = 1 - 2-i

for m elements: = (1 - 2-i)m

 P(one e has trailZeros > i) = 1 - (1 - 2-i)m

≈ 1 - e-m2^-i

If 2R >> m, then 1 - (1 - 2-i)m ≈ 0
If 2R << m, then 1 - (1 - 2-i)m ≈ 1

Counting Moments

Moments:

● Suppose mi is the count of distinct element i in the data

● The kth moment of the stream is

● 0th moment: count of distinct elements
● 1st moment: length of stream
● 2nd moment: sum of squares

(measures uneveness; related to variance)

0th moment
Streaming Solution: Flajolet-Martin Algorithm
General idea:

n -- suspected total number of elements observed
pick a hash, h, to map each element to log2n bits (buckets)

R = 0 #current max number of zeros at tail
for each stream element, e:

r(e) = trailZeros(h(e)) #num of trailing 0s from h(e)
R = r(e) if r[e] > R

estimated_distinct_elements = 2R # m

Mathematical Intuition
 P(trailZeros(h(e)) >= i) = 2-i
 # P(h(e) == __0) = .5; P(h(e) == __00) = .25; …
 P(trailZeros(h(e)) < i) = 1 - 2-i

for m elements: = (1 - 2-i)m

 P(one e has trailZeros > i) = 1 - (1 - 2-i)m

≈ 1 - e-m2^-i

If 2R >> m, then 1 - (1 - 2-i)m ≈ 0
If 2R << m, then 1 - (1 - 2-i)m ≈ 1

Problem:
Unstable in practice.

Solution:
Multiple hash functions

but how to combine?

Moments:

● Suppose mi is the count of distinct element i in the data

● The kth moment of the stream is

● 0th moment: count of distinct elements
● 1st moment: length of stream
● 2nd moment: sum of squares

(measures uneveness; related to variance)

Counting Moments
0th moment
Streaming Solution: Flajolet-Martin Algorithm
General idea:

n -- suspected total number of elements observed
pick a hash, h, to map each element to log2n bits (buckets)

Rs = list()
for h in hashes:

R = 0 #potential max number of zeros at tail
for each stream element, e:

r(e) = trailZeros(h(e)) #num of trailing 0s from h(e)
R = r(e) if r[e] > R

Rs.append(2R)

groupRs = [Rs[i:i+log n] for i in range(0, len(Rs), log n)]

estimated_distinct_elements = median(map(mean, groupRs))

Problem:
Unstable in practice.

Solution: Multiple hash functions
1. Partition into groups of size log n
2. Take mean in groups
3. Take median of group means

Moments:

● Suppose mi is the count of distinct element i in the data

● The kth moment of the stream is

● 0th moment: count of distinct elements
● 1st moment: length of stream
● 2nd moment: sum of squares

(measures uneveness; related to variance)

Counting Moments
0th moment
Streaming Solution: Flajolet-Martin Algorithm
General idea:

n -- suspected total number of elements observed
pick a hash, h, to map each element to log2n bits (buckets)

Rs = list()
for h in hashes:

R = 0 #potential max number of zeros at tail
for each stream element, e:

r(e) = trailZeros(h(e) #num of trailing 0s from h(e)
R = r(e) if r[e] > R

Rs.append(2R)

groupRs = [Rs[i:i+log n] for i in range(0, len(Rs), log n)]

estimated_distinct_elements = median(map(mean, groupRs))

Problem:
Unstable in practice.

Solution: Multiple hash functions
1. Partition into groups of size log n
2. Take mean in groups
3. Take median of group means

A good approach anytime one
has many “low resolution”
estimates of a true value.

Moments:

● Suppose mi is the count of distinct element i in the data

● The kth moment of the stream is

Examples

● 0th moment: count of distinct elements

● 1st moment: length of stream

● 2nd moment: sum of squares (measures uneveness related to variance)

2nd moment
Streaming Solution: Alon-Matias-Szegedy Algorithm

(Exercise; Out of Scope; see in MMDS)

Counting Moments

Counting Moments

standard deviation
(square-root of variance for numeric data)

Counting Moments

standard deviation
(square-root of variance for numeric data)

Counting Moments

For streaming, just need to store
(1) number of elements, (2) sum of
elements, and (3) sum of squares.

standard deviation
(square-root of variance for numeric data)

Counting Moments

For streaming, just need to store
(1) number of elements, (2) sum of
elements, and (3) sum of squares.

However, challenge:
Sum of squares can blow up!

standard deviation
(square-root of variance for numeric data)

Filtering: Select elements with property x
Example: 40B safe email addresses for spam detector

Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows false positives but not false negatives)
Given:

|S| keys to filter; will be mapped to |B| bits
hashes = h1, h2, …, hk independent hash functions

Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows false positives but not false negatives)
Given:

|S| keys to filter; will be mapped to |B| bits
hashes = h1, h2, …, hk independent hash functions

Algorithm:
set all B to 0 #B is a bit vector

for each i in hashes, for each s in S:

 set B[h
i
(s)] = 1 #all bits resulting from

Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam detector

The Bloom Filter (approximates; allows false positives but not false negatives)
Given:

|S| keys to filter; will be mapped to |B| bits
hashes = h1, h2, …, hk independent hash functions

Algorithm:
set all B to 0 #B is a bit vector

for each i in hashes, for each s in S:

 set B[h
i
(s)] = 1 #all bits resulting from

 … #usually embedded in other code

while key x arrives next in stream #filter:

 if B[h
i
(x)] == 1 for all i in hashes:

 #do as if x is in S

 else: #do as if x not in S

Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows false positives but not false negatives)
Given:

|S| keys to filter; will be mapped to |B| bits
hashes = h1, h2, …, hk independent hash functions

Algorithm:
set all B to 0 #B is a bit vector

for each i in hashes, for each s in S:

 set B[h
i
(s)] = 1 #all bits resulting from

 … #usually embedded in other code

while key x arrives next in stream #filter:

 if B[h
i
(x)] == 1 for all i in hashes:

 #do as if x is in S

 else: #do as if x not in S

Filtering Data

Setup filter

Apply Filter

Filtering Data
Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows FPs)
Given:

|S| keys to filter; will be mapped to |B| bits
hashes = h1, h2, …, hk independent hash functions

Algorithm:
set all B to 0

for each i in hashes, for each s in S:

 set B[h
i
(s)] = 1

 … #usually embedded in other code

while key x arrives next in stream #filter:

 if B[h
i
(x)] == 1 for all i in hashes:

 #do as if x is in S

 else: #do as if x not in S

What is the probability of a false
positive (FP)?

Q: What fraction of |B| are 1s?

(Leskovec et al., 2014)

Filtering Data
Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows FPs)
Given:

|S| keys to filter; will be mapped to |B| bits
hashes = h1, h2, …, hk independent hash functions

Algorithm:
set all B to 0

for each i in hashes, for each s in S:

 set B[h
i
(s)] = 1

 … #usually embedded in other code

while key x arrives next in stream #filter:

 if B[h
i
(x)] == 1 for all i in hashes:

 #do as if x is in S

 else: #do as if x not in S

What is the probability of a false
positive?

Q: What fraction of |B| are 1s?

A: Analogy:
 Throw |S| * k darts at n targets.
 1 dart: 1/n
 d darts: (1 - 1/n)d = prob of 0
 = e-d/n are 0s

(Leskovec et al., 2014)

Filtering Data
Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows FPs)
Given:

|S| keys to filter; will be mapped to |B| bits
hashes = h1, h2, …, hk independent hash functions

Algorithm:
set all B to 0

for each i in hashes, for each s in S:

 set B[h
i
(s)] = 1

 … #usually embedded in other code

while key x arrives next in stream #filter:

 if B[h
i
(x)] == 1 for all i in hashes:

 #do as if x is in S

 else: #do as if x not in S

What is the probability of a false
positive?

Q: What fraction of |B| are 1s?

A: Analogy:
 Throw |S| * k darts at n targets.
 1 dart: 1/n
 d darts: (1 - 1/n)d = prob of 0
 = e-d/n are 0s

(Leskovec et al., 2014)

 = e-1

for large n

Filtering Data
Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows FPs)
Given:

|S| keys to filter; will be mapped to |B| bits
hashes = h1, h2, …, hk independent hash functions

Algorithm:
set all B to 0

for each i in hashes, for each s in S:

 set B[h
i
(s)] = 1

 … #usually embedded in other code

while key x arrives next in stream #filter:

 if B[h
i
(x)] == 1 for all i in hashes:

 #do as if x is in S

 else: #do as if x not in S

What is the probability of a false
positive?

Q: What fraction of |B| are 1s?

A: Analogy:
 Throw |S| * k darts at n targets.
 1 dart: 1/n
 d darts: (1 - 1/n)d = prob of 0
 = e-d/n are 0s

 thus, (1 - e-d/n) are 1s

probability all k being 1?

(Leskovec et al., 2014)

Filtering Data
Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows FPs)
Given:

|S| keys to filter; will be mapped to |B| bits
hashes = h1, h2, …, hk independent hash functions

Algorithm:
set all B to 0

for each i in hashes, for each s in S:

 set B[h
i
(s)] = 1

 … #usually embedded in other code

 while key x arrives next in stream #filter:

 if B[h
i
(x)] == 1 for all i in hashes:

 #do as if x is in S

 else: #do as if x not in S

What is the probability of a false
positive?

Q: What fraction of |B| are 1s?

A: Analogy:
 Throw |S| * k darts at n targets.
 1 dart: 1/n
 d darts: (1 - 1/n)d = prob of 0
 = e-d/n are 0s

 thus, (1 - e-d/n) are 1s

probability all k being 1?
(1 - e-(|S|*k)/n)k

|S| size of set
k: number of hash functions
n: number of buckets

Note: Can expand S as stream
continues as long as |B| has room

(e.g. adding verified email addresses)

(Leskovec et al., 2014)

Side Note on Generating Hash Functions:

What hash functions to use?

Start with 2 decent hash functions

e.g. h
a
(x) = ascii(string) % large_prime_number

h
b
(x) = (3*ascii(string) + 16) % large_prime_number

Add together multiplying the second times i:

 h
i
(x) = h

a
(x) + i*h

b
(x) % |BUCKETS|

e.g. h
5
(x) = h

a
(x) + 5*h

b
(x) % 100

https://www.eecs.harvard.edu/~michaelm/postscripts/rsa2008.pdf

Popular choices: md5 (fast, predistable); mmh3 (easy to seed; fast)

https://www.eecs.harvard.edu/~michaelm/postscripts/rsa2008.pdf

● General Stream Processing Model

● Sampling

○ approx. random

○ hierarchical approx. random

● Counting Elements

○ distinct elements

○ mean, standard deviation

● Filtering data according to a criteria

○ bloom filter setup + application

○ calculating false positives

Streaming Topics

